Yeast Bim1p Promotes the G1-specific Dynamics of Microtubules

نویسندگان

  • Jennifer S. Tirnauer
  • Eileen O'Toole
  • Lisbeth Berrueta
  • Barbara E. Bierer
  • David Pellman
چکیده

Microtubule dynamics vary during the cell cycle, and microtubules appear to be more dynamic in vivo than in vitro. Proteins that promote dynamic instability are therefore central to microtubule behavior in living cells. Here, we report that a yeast protein of the highly conserved EB1 family, Bim1p, promotes cytoplasmic microtubule dynamics specifically during G1. During G1, microtubules in cells lacking BIM1 showed reduced dynamicity due to a slower shrinkage rate, fewer rescues and catastrophes, and more time spent in an attenuated/paused state. Human EB1 was identified as an interacting partner for the adenomatous polyposis coli (APC) tumor suppressor protein. Like human EB1, Bim1p localizes to dots at the distal ends of cytoplasmic microtubules. This localization, together with data from electron microscopy and a synthetic interaction with the gene encoding the kinesin Kar3p, suggests that Bim1p acts at the microtubule plus end. Our in vivo data provide evidence of a cell cycle-specific microtubule-binding protein that promotes microtubule dynamicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism for Astral Microtubule Capture by Cortical Bud6p Priming Spindle Polarity in S. cerevisiae

BACKGROUND Budding yeast is a unique model to dissect spindle orientation in a cell dividing asymmetrically. In yeast, this process begins with the capture of pole-derived astral microtubules (MTs) by the polarity determinant Bud6p at the cortex of the bud in G(1). Bud6p couples MT growth and shrinkage with spindle pole movement relative to the contact site. This activity resides in N-terminal ...

متن کامل

Phosphoregulation of the budding yeast EB1 homologue Bim1p by Aurora/Ipl1p

EB1 (end binding 1) proteins have emerged as central regulators of microtubule (MT) plus ends in all eukaryotes, but molecular mechanisms controlling the activity of these proteins are poorly understood. In this study, we show that the budding yeast EB1 protein Bim1p is regulated by Aurora B/Ipl1p-mediated multisite phosphorylation. Bim1p forms a stable complex with Ipl1p and is phosphorylated ...

متن کامل

Bim1p/Yeb1p mediates the Kar9p-dependent cortical attachment of cytoplasmic microtubules.

In Saccharomyces cerevisiae, positioning of the mitotic spindle depends on the interaction of cytoplasmic microtubules with the cell cortex. In this process, cortical Kar9p in the bud acts as a link between the actin and microtubule cytoskeletons. To identify Kar9p-interacting proteins, a two-hybrid screen was conducted with the use of full-length Kar9p as bait, and three genes were identified:...

متن کامل

Eb1 Proteins Regulate Microtubule Dynamics, Cell Polarity, and Chromosome Stability

The EB1 family represents a highly conserved group of proteins, present in yeast through humans, that localize to spindle and cytoplasmic microtubules, especially at their distal tips. The budding yeast homologue of EB1, Bim1p, regulates microtubule stability and is important for positioning the mitotic spindle, anchoring it to the bud through astral microtubule attachment to the cortical prote...

متن کامل

Microtubule Cytoskeleton: Navigating the Intracellular Landscape Dispatch

The intracellular cytoskeleton in embryos and single-cell eukaryotes is extremely dynamic and constantly remodeled during growth and differentiation. Microtubules and actin filaments comprise the filamentous cytoskeletal network. We are starting to understand how microtubules and actin filaments collaborate to ‘read’ intracellular cues. Microtubules are nucleated from microtubule organizing cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 145  شماره 

صفحات  -

تاریخ انتشار 1999